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a b s t r a c t

In this paper we study the dynamic response of a pinned shallow arch subjected to a

pair of equal and opposite end moments suddenly. An experimental setup is designed to

measure both the static deflection and dynamic response of the loaded arch. The

dynamic buckling load as a function of the rise parameter is of particular interest. In

order to theoretically identify the necessary and sufficient condition for dynamic snap-

through, an accurate estimate of the system damping is required. This, however, proves

to be a difficult task. A more practical approach is to adopt a sufficient condition which

ensures that the arch will be safe from dynamic snapping. This condition leads to a

lower bound of the dynamic critical load. As long as the end moments are smaller than

this lower bound, it is guaranteed that the arch will not snap dynamically no matter

what the system damping may be. For an arch with rise parameter greater than 6.55, it

is shown that a closed-form expression of this lower bound of dynamic critical load can

be derived. This simple formula should prove useful to design engineers.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of snap-through buckling load of a shallow arch is a classic problem in applied mechanics. Previous
research works available in the literature can be divided into three groups based on the type of external loads. In the first
group the external loads are applied in the form of lateral forces on the arch. The lateral forces can be concentrated or
distributed, space-fixed or moving, quasi-static or time-varying. For a complete review of the previous works of this group
up to 1990, the readers are referred to the two books by Simitses [1,2]. Several more recent works can be found in [3]. In
particular, Pi and Bradford [4] and Chen et al. [5] studied the dynamic snapping of a shallow arch under a suddenly applied
concentrated force at the mid-point of the arch.

In the second group the external load is applied longitudinally at the ends. Although internal resonance is of primary
interest, snap-through buckling is also possible by this type of loading. For the subject of internal resonance due to
longitudinal force a fairly comprehensive reference list can be found in [6]. Snap-through buckling caused by harmonic
longitudinal excitation was demonstrated by Chen and Chang [7].

In the third group, the shallow arch is loaded by a pair of equal and opposite moments at the two ends of the shallow
arch. Plaut [8] appears to be the first author studying this problem, in which he derived the optimal design for stability for
an arch under end moments. Recently, Chen and Lin [9] and Plaut [10] presented an exact static critical load for a pinned
shallow arch under end moments. In practical applications it is more likely that the end moments, which are proportional
to the actuating voltage in piezoelectric switching devices [11], are applied suddenly instead of quasi-statically. In such a
case the shallow arch may snap dynamically and the associated buckling load is in general different from its quasi-static
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counterpart. In this paper we extend our previous work on quasi-static loading [9] to the dynamic case when the shallow
arch is loaded suddenly by a pair of equal and opposite end moments. Both theoretical and experimental methods are
adopted and the results are compared.

2. Equations of motion

We consider a pinned shallow arch loaded suddenly by a pair of equal and opposite end moments, as shown in Fig. 1.
The equation of motion of the loaded arch can be written as

rAy;tt þ EIðy� y0Þ;xxxx � p�y;xx þM�HðtÞ½�d�
0

ðxÞ þ d�
0

ðx� LÞ� ¼ 0 (1)

p* is the axial force due to the stretching of the neutral axis,

p� ¼
AE

2L

Z L

0
ðy2
;x � y2

0;xÞdx (2)

r and E are mass density and Young’s modulus. A and I are area and moment of inertia of the cross section. L is the distance
between the two pinned-ends. x and t are the longitudinal position and time. y0(x) and y(x,t) are the initial (unstrained) and
the deformed shapes of the arch, both measured from the same base plane. M* is the magnitude of the end moments. d�

0

is
the derivative of the Dirac delta function with respect to x. HðtÞ is the Heaviside step function.

Eqs. (1) and (2) can be non-dimensionalized to the forms

u;tt þ ðu� u0Þ;xxxx � pu;xx þ
p
4

MHðtÞ½�d0ðxÞ þ d0ðx� pÞ� ¼ 0 (3)

p ¼
1

2p

Z p

0
ðu2
;x � u2

0;xÞdx (4)

The dimensionless parameters are related to their physical counterparts in the following forms:

ðu;u0Þ ¼
1

r
ðy; y0Þ; x ¼

px

L
; t ¼ p2t

L2

ffiffiffiffiffiffiffi
EI

Ar

s
; p ¼

p�L2

p2EI

M ¼
4M�L2

p3EIr
; d0 ¼

L2

p2
d�
0

; o ¼ L2

p2

ffiffiffiffiffiffiffi
Ar
EI

r
o�; m ¼ L2m�

p2rAr

ffiffiffiffi
r
E

r

where r ¼
ffiffiffiffiffiffiffi
A=I

p
is the radius of gyration of the cross section. The parameters m and o are the damping and natural

frequency of the arch, which will be discussed later. The boundary conditions for u at x ¼ 0 and p are

uð0Þ � u0ð0Þ ¼ u;xxð0Þ � u0;xxð0Þ ¼ uðpÞ � u0ðpÞ ¼ u;xxðpÞ � u0;xxðpÞ ¼ 0 (5)

The initial and deformed shapes of the arch are assumed to be in the forms

u0ðxÞ ¼ h sin x (6)

uðx; tÞ ¼ lim
N!1

XN
n¼1

anðtÞ sin nx (7)

N is the number of modes used in the series (7). h is the arch height, sometimes called the rise parameter. After substituting
Eqs. (6) and (7) into (3) and(4) we obtain the following equations for an:

€an ¼ �n4an � n2pan � qn; n ¼ 1;2;3; . . . (8)

where

p ¼
1

4

X1
k¼1

k2a2
k �

h2

4
(9)
L

y0

x

y

M(t) M(t)

Fig. 1. A shallow arch loaded by a pair of equal and opposite end moments.
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q1 ¼ M � h (10)

qn ¼ 0; n ¼ 2;4;6; . . . (11)

qn ¼ nM; n ¼ 3;5;7; . . . (12)

The overhead dot in Eq. (8) represents differentiation with respect to t. The arch is unstrained before time t ¼ 0.
In the above formulation we include the moments in the equation of motion (3) instead of the boundary conditions. As a

result the assumed functions in the infinite series (7) satisfy all the boundary conditions. A slightly different formulation is
to include the moments in the boundary conditions and exclude them from the equation of motion. In this alternative
approach the series (7) can still be used because the assumed functions satisfy the geometric boundary conditions,
although not the natural boundary conditions involving the applied moments. After integrating by parts twice as in the
usual Galerkin’s procedure, the end moments will be incorporated into the discretized equations (8)–(12) automatically.
These two approaches produce exactly the same result.

3. Equilibrium configurations

By neglecting the acceleration term in Eq. (8) we can solve for the equilibrium configurations. There are two types of
solutions.

(1) Symmetrical solution: a2i ¼ 0, where i ¼ 1,2,3,y. The remaining coordinates a2iþ1 can be related to a1 by eliminating
p from the two equations in (8) for n ¼ 1 and 2i+1,

a2iþ1 ¼
�a1q2iþ1

ð2iþ 1Þ2½4iðiþ 1Þa1 � q1�
; i ¼ 1;2;3; . . . (13)

a1 can be solved by substituting Eq. (13) into Eq. (8) for n ¼ 1, which becomes

a1 þ
a1

4
ða2

1 � h2
Þ þ q1 þ

X1
i¼1

q2
2iþ1a

3
1

4ð2iþ 1Þ2½4iðiþ 1Þa1 � q1�
2

( )
¼ 0 (14)

(2) Unsymmetrical solution: a2ja0 for some j, and all other a2i ¼ 0, i ¼ 1,2,3,y, iaj. For this type of solution we can solve
for a1, a3, a5, etc., exactly as

ai ¼
qi

i2½4j2 � i2�
; i ¼ 1;3;5; . . . (15)

a2j can be obtained from the following equation:

a2j ¼ �
1

2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
� 16j2 �

X1
i¼1;3;5;...

q2
i

i2½4j2 � i2�2

vuut ; j ¼ 1;2;3; . . . (16)

It is noted that the coordinates ai of an unsymmetrical solution can be written in closed forms as in Eqs. (15) and (16),
while ai of a symmetrical solution can only be obtained numerically from Eq. (14).

In the case when M ¼ 0, there are two types of symmetrical solutions, i.e., three one-mode solutions (P0, Pþ1 , and P�1 )

involving a1 only, and pairs of two-mode solutions (Pþ1ð2jþ1Þ and P�1ð2jþ1Þ, denoted collectively as P�1ð2jþ1Þ) involving two

coordinates a1 and a2jþ1. On the other hand, the unsymmetrical solutions always involve two coordinates a1 and a2j,

denoted as P�1ð2jÞ. P0 represents the original shape. P�1 is another stable configuration on the other side of the base plane.

Pþ1 is an unstable position between P0 and P�1 . All two-mode solutions, symmetrical or unsymmetrical, are unstable.

As M increases from zero all symmetrical (unsymmetrical) solutions remain symmetrical (unsymmetrical), although all
solutions involve infinite number of harmonic components. However, for simplicity we still use the notations P0, Pþ1 , P�1 ,
and P�1j for the case M ¼ 0 to name the solutions for Ma0 even if they are no longer one- or two-mode solutions.

4. Natural frequencies

The natural frequencies on of the two stable equilibrium positions P0 and P�1 when the arch is loaded by end moments
can be calculated as follows. First of all we denote the coordinates of the stable position as as

n, which can be calculated
from Eqs. (13) and (14). By superposing a small perturbations jn tð Þ onto as

n, and substituting the perturbed coordinates
an tð Þ ¼ as

n þjn tð Þ into Eq. (8), retaining only the linear terms, the linearized equations can be written as

€j1 ¼ �j1
1

4
4þ 3ðas

1Þ
2 þ

X1
k¼3;5;...

k2
ðas

kÞ
2 � h2

2
4

3
5

8<
:

9=
;� a

s
1

2

X1
k¼3;5;...

k2as
kjk (17)
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€jn ¼ �jn n4 þ
n2

4

X1
k¼1;3;...

k2
ðas

kÞ
2 � h2

2
4

3
5

8<
:

9=
;� n2as

n

2

X1
k¼1;3;...

k2as
kjk; n ¼ 3;5; . . . (18)

€jn ¼ �jn n4 þ
n2

4

X1
k¼1;3;...

k2
ðas

kÞ
2 � h2

2
4

3
5

8<
:

9=
;; n ¼ 2;4; . . . (19)

From Eqs. (17)–(19), one can calculate the natural frequencies of the arch near a stable equilibrium position.
It is noted that in the case when the arch is unloaded and unstrained, as

1 ¼ h and all other as
n ¼ 0 for na1. As a

consequence the natural frequency on corresponding to the mode shape sin nx (for na1) is n2, which is independent of the

arch height h. On the other hand, the natural frequency o1 corresponding to mode shape sin x is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh2=2Þ

q
, which is

normally not the fundamental frequency. For instance when h ¼ 50, the fundamental frequency is o2 ¼4. o1 ¼ 35.4 is the
fifth natural frequency.

In the case when Ma0, Eq. (19) indicates that the modes with even number of n are decoupled from others. As a result
the eigenvector corresponding to o2n has only a non-zero component j2n, and the mode shape remains to be sin 2nx as
M increases. On the other hand, Eqs. (17) and (18) indicate that the modes with odd number of n involve all odd number of
components in the eigenvectors.

In Fig. 2 we show the variation of the natural frequencies near position P0 when the load M increases from 0 to 170 for
an arch with h ¼ 50. It is observed that the frequency loci of the even number of modes, o2, o4, etc., decrease with M. In
particular, the fundamental frequency o2 vanishes at M ¼ 161, which is the static critical load. For M greater than 161,
position P0 becomes unstable and the calculated natural frequencies become meaningless. On the other hand, the
frequency loci of the odd number of modes may decrease (o3 and o5) or increase (o1 and o7) with M. More calculations
not shown here lead us to believe that for all the odd number of modes with frequencies higher than o1 when M ¼ 0 the
frequency loci will increase with M, and vice versa. Furthermore, Fig. 2 shows that the frequency loci o1 and o7 cross,
instead of veering away from, the loci of o6 and o8 at M ¼ 19.7 and 133, respectively.
5. Experimental verification

In order to examine the validity of the above formulation we design an experimental setup, as shown in Fig. 3, to
measure the static and dynamic responses of an arch loaded by end moments. The measurement will be compared with
numerical simulation based on Eqs. (8)–(12). The arch is made of brass strip with Young’s modulus 101 GPa and mass
density 8840 kg/m3. The span length L of the arch is 44 cm and the cross section is 20 mm�1.0 mm. Both ends of the
curved beam are attached to roller bearings to simulate pinned condition. Attached to the outer race of the roller bearings
are pulleys with radius of 2.05 cm. Cotton strings are fastened to and rounded around the pulleys on the arch ends and
guided by another set of pulleys on the table as shown. At the end of the two strings is attached a hanging bucket. In the
bucket we put in small steel screws as dead load. Each screw weighs 53 g and contributes 0.54 N cm of moment on each
end. The empty bucket weighs 100 g.
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5.1. Static deformation

We first measure the midpoint deflection of an arch with height h ¼ 50 (14.4 mm) when the end moments are applied
quasi-statically. We use a micro-stage on a vertical post to measure the displacement of the arch midpoint. Four screws are
added to the bucket each time. As a consequence, the moment increment in the test is DM ¼ 11 (2.2 N cm). On the micro-
stage we attach a metallic probe connected to a multimeter. An alarm will sound off when the probe touches the brass
strip. The arrows in the figure indicate the direction of the applied load variation. For convenient reference, we present the
measured results with both dimensionless parameters (left and bottom sides) and the physical ones (right and top sides).
The same labeling style is adopted in all the figures involving experimental measurements.

In the first run of the test, the end moments are increased from zero until the arch snaps when M ¼ 175 (35 N cm). The
positions u of the midpoint are recorded in Fig. 4 as cross marks (� ). After snapping, we continue to increase the end
moments until M ¼ 205 (41 N cm). In the second run of the test we reverse the loading direction by removing the screws
from the bucket one by one until the bucket is empty. The displacement measurements in this unloading process are
recorded by open circles (J).

Numerical predictions of the midpoint position based on the theory in Section 3 are plotted in Fig. 4 for comparison.
Four modes (N ¼ 4) are found to be enough to ensure convergence in static loading. The solid lines in the upper and lower
branches represent the stable P0 and P�1 configurations. The dashed straight line represents the unstable P�12 configuration
as defined in Section 3. Theoretical quasi-static snapping occurs when the deflection curve of P�12 intersects those of P0 and
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P�1 . The static critical end moment (as N-N) is predicted in [9] as

MS�
cr ¼

16

9p2
4h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16þ 18p2Þh2

� 324p2

q� �
(20)

For the specimen in the test, the theoretical critical moment is MSþ
cr ¼ 161 (32 N cm). The ‘‘+’’ sign in MSþ

cr indicates that the
critical load snaps the arch from P0 to P�1 .

From Fig. 4 we observe that the displacement measurements follow the theoretical load–deflection curve closely in both
branches, and snapping occurs at the predicted critical load within the accuracy limit of our test (DM ¼ 11). This
satisfactory agreement between experiment and theory enhance our confidence in the mathematical formulation and the
material constants we adopt from engineering handbooks.

5.2. Measurement of natural frequencies

We use an LDV system (Polytec OFV508/2802) to measure the natural frequencies of the shallow arch. The laser beam is
shone on a point of the arch, as shown in Fig. 2. In the experiment the target point is not necessarily the midpoint. After
hitting the arch with a small rod, the response signal is fed into a spectrum analyzer (HP35665A) to calculate its power
spectrum. Fig. 5 is an example power spectrum when the arch is unloaded. The first five natural frequencies are detected at
34, 66, 111, 143, and 170 Hz. The theoretical model predicts 32, 72, 129, 201, and 284 Hz. The discrepancy between
experiment and theory are 4.4, 8.7, 13.6, 28.8, and 40.3 percent, respectively. Although the accuracy of the theoretical
prediction deteriorates in the higher modes, the agreement is not so bad in the first three modes.

Our experience indicates that the rotary inertia of the end pulleys, which is ignored in the theoretical model, has a non-
ignorable effect on the natural frequencies. The agreement between experiment and theory was terrible in our first design
in which each end pulley weighs almost 0.7 kg. The discrepancy in the fundamental frequency ran as high as 48 percent
with this design. After reducing the size of the pulley dramatically to 0.06 kg each through a finite element analysis, we see
noticeable improvement in the agreement between experiment and theory.

5.3. Estimate of damping

To simulate the dynamic response of the arch under step end moments numerically, we have to estimate the damping of
the arch assembly first. The dissipating mechanism of the system comes from the friction in the moving parts and the
material damping in the arch. We assume that the damping mechanism is of the viscous type and modify Eq. (8) by adding
damping parameters mn,

€an ¼ �mn _an � n4an � n2pan � qn; n ¼ 1;2;3; . . . (21)

It is noted that Eq. (21) allows the damping parameters to be different for each mode.
We first pull the string attached to the hanging bucket a small distance and release. This action is equivalent to imposing

a small rotation on both ends. We measure the transient response at the midpoint. The speed signal from the LDV system
can be integrated to obtain the displacement history u� u0 as shown by the solid line in Fig. 6. This transient response is
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dominated by the mode sin 3x with frequency 66 Hz. We assume that this damped response can be simulated by retaining
only m3 in Eq. (21). From the decaying rate between two consecutive peaks we can estimate the damping ratio of this mode,
which is the ratio between m3 and a critical damping m3c , as 4 percent. This suggests that the arch system in our experiment
can be considered as lightly damped. The critical damping m3c is obtained numerically by increasing m3 from zero gradually
until the response ceases to oscillate. By this manner m3c and m3 are found to be 17.2 and 0.66, respectively. The numerical
result obtained by integrating Eq. (21) based on this estimated damping (m3 ¼ 0.66) is plotted in Fig. 6 as dashed line to
check the accuracy of this estimate. This logarithmic decrement method can be found in [12].

We assume that the damping ratios of all other modes are in the similar order of magnitude, i.e., 4 percent. By this bold
assumption we can calculate mnc and mn accordingly. Whether they are good estimates can be judged in the following
experiments.

5.4. Dynamic response under step end moments

In the first experiment on the dynamic response, we apply a smaller end moment M ¼ 37 (7.4 N cm). The loaded bucket
is released by hand suddenly to simulate a step load. The solid line in Fig. 7(a) represents the measured lateral position
history u at the midpoint while the dashed line represents the numerical simulation based on Eq. (21). The response
appears to be dominated by a3. No dynamic snap-through occurs in this test. For the range of time in Fig. 7, it is found that
8 modes are sufficient in ensuring convergence. This means that the result from a 16-mode approximation is
indistinguishable from the one from an 8-mode approximation. It is observed that the agreement between experiment
and theory is quite good in the first five oscillations. After 0.1 s, however, the measured displacement appears to be stuck
and ceases to oscillate. This suggests that the viscous damping model is inadequate in modeling the dynamic response
when the vibration amplitude is too small. Instead, this sticky motion may be simulated better with a friction damping
model, which will not be discussed in his paper.

In the second experiment we increase the end moment to 161 (32 N cm). In this test the arch is observed to snap to the
other side directly, as shown by the solid line in Fig. 7(b). By comparing to the numerical simulation (dashed line) we
observe that the theoretical model seems to be able to capture the essential feature of the response. In particular, the first
reverse peak at t ¼ 4.5 agrees with the experiment quite well. However, the height of the next peak is not as large as the
measured one. This suggests that the system damping, which is estimated near the position P0, is a little too large in
predicting the response when the arch vibrates near another position P�1 .

5.5. Measurement of dynamic snapping load

Following the above dynamic experiments, a question arises naturally regarding at exactly what end moment dynamic
snap-through will start to occur. In order to answer this question, we prepare six specimens with arch heights h ¼ 20, 30,
40, 50, 60, and 70. For each specimen we repeat the dynamic experiment by increasing the magnitude of the end moments
incrementally by DM ¼ 2.75 until the arch snaps dynamically. The symbol ‘‘� ’’ in Fig. 8 marks the smallest moment
needed to snap the arch dynamically from position P0 to P�1 for each respective arch height.

The measured critical load can be compared with the numerical simulation based on Eq. (21). For each of these arch
heights at hand, we increase the end moment incrementally by DM ¼ 1 and examine the history of coordinate a1 up to
t ¼ 100. If at any time before t ¼ 100 a1 becomes negative, we say that the arch snaps dynamically. In reality, it is observed
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that the arch reaches equilibrium state well before t ¼ 20 in most of the cases. The smallest moment is then marked with
open circle ‘‘J’’ in Fig. 8. It is observed that the numerical simulation overestimates the dynamic critical load by about
28 percent in each of the arch under test. This overestimation suggests that the system damping adopted in the calculation
may be too large in predicting the dynamic critical load.
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6. Total potentials

The calculation of the dynamic critical load as described in Fig. 8 is time-consuming. Besides, the numerical result is
strongly dependent upon damping, which is in general difficult to estimate satisfactorily. In the following sections we
endeavor to find a lower bound of the dynamic buckling load based on the total potential of the loaded arch. This lower
bound offers us a more conservative estimate of the dynamic critical load and is immune from the inaccuracy of the
estimated damping. This approach is considered to be more practical in engineering applications than the direct
integration method. It will be shown that under certain condition the closed-form expression of this lower bound can even
be obtained.

For dynamic snap-through to occur there must exist two stable equilibrium configurations after the step end moments
are applied. While it is in general difficult to determine the necessary and sufficient condition for dynamic snap-through to
occur, as explained in Section 5.5, it is possible to establish a sufficient condition against dynamic snap-through in terms of
the total potential U of the loaded arch. The magnitude of the end moments which meets this sufficient condition is called
the lower bound of the dynamic critical load in this paper. If the magnitude of the end moment is smaller than this lower
bound, it is guaranteed that the arch will return to P0 position after the transient vibration is settled by damping. On the
other hand, there is no guarantee whether the arch will snap or not when the magnitude of the end moment is greater than
this lower bound. This conservative lower bound can be determined from the condition that the energy barrier between the
two stable positions becomes zero [2].

The dimensionless total potential U of an equilibrium configuration is defined as

U ¼ Us þ Um (22)

where Us is the strain energy of the deformed arch and Um the potential corresponding to the end moments,

Us ¼ 2p2 þ
2

p

Z p

0
ðu;xx � u0;xxÞ

2 dx ¼ 2p2 þ h2
� 2ha1 þ

X1
n¼1

½n4a2
n� (23)

Um ¼ 2M½u;xð0Þ � u0;xð0Þ� ¼ 2M
X1

n¼1;3;5;...

nan � h

2
4

3
5 (24)

The relation between U and its physical counterpart U� is

U� ¼
4AL3U

p4EI2

The total potentials of the equilibrium configurations Pþ1j and P�1j are equal, denoted as UðP�1jÞ. In the case when the loaded
arch possesses two-mode solutions, the energy barrier between the two stable configurations P0 and P�1 can be proved to
be the total potential of P�12. In general this occurs when the arch height h is greater than 6.55 [9]. On the other hand for
ho6.55 the energy barrier is the total potential of Pþ1 . Since the heights of all the specimens tested in this paper are greater
than 6.55, we focus our attention on this case.

Fig. 9 shows the total potentials UðP0Þ, UðPþ1 Þ, and UðP�12Þ, as calculated from Eqs. (22)–(24), as functions of M for an arch
with h ¼ 50. The total potentials of other unstable configurations, such as, P�13, P�14, etc., are beyond the range of the plot.
The total potential UðP�12Þmeets line U ¼ 0 when M ¼ 100, which is the lower bound of the dynamic critical load MD

crðlÞ. It is
0

M

-10000

0

10000

20000

30000

U

161=S+
crM

100=D
cr(l)M

)1
+U(P

U(P0)

)12
±U(P

30 60 90 120 150 180

Fig. 9. Total potentials UðP0Þ, UðPþ1 Þ, and UðP�12Þ as functions of M for a shallow arch with h ¼ 50. The lower bound of the dynamic critical load MD
crðlÞ ¼ 100

corresponds to the situation when UðP�12Þ becomes zero.
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noted that UðP�12Þ meets UðP0Þ when M ¼ 161, which is the static critical load MSþ
cr . For this arch with h ¼ 50 the lower

bound of the dynamic critical load is 38 percent of MSþ
cr .

7. Exact lower bound of dynamic snapping load

It is noted that the curve UðP�12Þ in Fig. 9 appears to be a straight line. In this section we verify this observation
analytically and derive the exact expression of the lower bound of the dynamic critical load. This is possible because the
coordinates a2 and a2iþ1 of P�12 can be written in closed forms. From Eqs. (22)–(24) UðP�12Þ can be written as

UðP�12Þ ¼ 32þ h2
� 2ha1 � 2hM þ 16a2

2 þ
X1

n¼1;3;5;...

½n4a2
n þ 2nMan� (25)

It is noted that the ai’s in Eq. (25) are functions of M. After substituting a2 from Eq. (16) and a2iþ1 from Eq. (15) into
Eq. (25), the total potential UðP�12Þ can be simplified to the following form:

UðP�12Þ ¼ �
8

3
hM þ

16

3
h2
� 32

� �
(26)

This confirms the observation in Fig. 9 that UðP�12Þ is a straight line. From the condition UðP�12Þ ¼ 0 for the lower bound of
the dynamic critical load, we can derive the exact expression of MD

crðlÞ as

MD
crðlÞ ¼ 2h�

12

h
(27)

Both critical conditions for static (Eq. (20)) and dynamic (Eq. (27)) buckling are plotted in Fig. 8 to compare with the
experimental and direct integration results. First of all, MSþ

cr can be considered as the upper bound of the dynamic critical
load, i.e., the arch will definitely snap as long as the end moment is greater than MSþ

cr . This is only natural because the arch
will settle to equilibrium state sooner or later. Secondly, MD

crðlÞ indeed establishes a conservative lower bound of the
dynamic critical load. In other words, for end moments smaller than MD

crðlÞ, it is guaranteed that the arch is safe from
dynamic snapping. For end moments between MD

crðlÞ and MSþ
cr the arch may or may not snap dynamically, depending upon

the system damping. Thirdly, and somewhat surprisingly, for an arch with 4 percent of damping ratio the numerical
prediction of dynamic critical moment is actually very close to the static critical load MSþ

cr . For instance, for the arch with
h ¼ 50, direct integration predicts dynamic critical load at 159. This is only slightly smaller than the static critical load
MSþ

cr ¼ 161. For an arch with smaller damping, it is expected that the dynamic critical load predicted via direct integration
should be noticeably smaller than MSþ

cr . In a numerical experiment, we repeat the direct integration by removing the
system damping altogether. The calculated dynamic critical loads are then marked with symbol ‘‘&’’. These undamped

dynamic critical loads lie midway between MD
crðlÞ and MSþ

cr . Moreover, they predict the real dynamic critical load even better

than the ones taking into account the system damping estimated from experiment. This discouraging result stresses one
more time the difficulty in estimating the damping of the system reasonably.

8. Conclusions

In this paper we study the dynamic in-plane snap-through of a shallow arch subjected to a pair of equal and opposite
end moments suddenly. An experimental setup is designed to measure both the static deflection and dynamic response of
the loaded arch. The dynamic critical load as a function of the arch height is of particular interest. Several conclusions can
be summarized as follows:
(1)
 The static deflection measurements agree with the theoretical load–deflection relation and the static critical load quite
well. This confirms that the mathematical formulation and the material constants adopted in the calculations are
acceptable.
(2)
 An accurate estimate of the system damping is critical in predicting the dynamic response of the loaded arch. This,
however, proves to be a difficult task. Our experimental results suggest that the viscous model of damping may be
inadequate when the vibration amplitude becomes small. Furthermore, the damping parameters estimated near an
equilibrium position may not be usable when the arch vibrates near another position. These difficulties render the
numerical prediction of the necessary and sufficient condition for dynamic snap-through impractical.
(3)
 A more practical approach is to adopt a sufficient condition which ensures that the arch will be safe from dynamic
snapping. This condition leads to a lower bound of the dynamic critical load. As long as the end moments are smaller
than this lower bound, it is guaranteed that the arch will not snap dynamically no matter what the system damping
may be.
(4)
 For an arch with height greater than 6.55, it is shown that closed-form expression of this lower bound of dynamic
critical load can be found as in Eq. (27). This simple formula should prove useful to design engineers.
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